

Multi-Frequency Radar Retrieval of Snowfall Microphysics

Jussi Leinonen

With contributions from:

Matthew D. Lebsock, Ousmane O. Sy, Simone Tanelli, Brenda Dolan,

Randy J. Chase, Joseph A. Finlon, Dmitri Moisseev, Annakaisa von Lerber

Multi-frequency retrievals

- Single frequency: water content
- Dual-frequency: hydrometeor size
- Triple-frequency: snow density

Multi-frequency retrievals

- Single frequency: water content
- Dual-frequency: hydrometeor size
- Triple-frequency: snow density

Multi-frequency retrievals

Now available:

- Triple-frequency data from campaigns
- Snow scattering databases with variable density

Algorithm

$$E[\mathbf{x}|\mathbf{y}] = \int \mathbf{x} \, p(\mathbf{x}|\mathbf{y}) \, d\mathbf{x} = \frac{1}{p(\mathbf{y})} \int \mathbf{x} \, p(\mathbf{y}|\mathbf{x}) \, p(\mathbf{x}) \, d\mathbf{x}$$
Measurement:
$$\mathbf{y} = \begin{bmatrix} Z_{\text{dB,Ku}} \\ DWR_{\text{Ka/W}} \\ DWR_{\text{Ku/Ka}} \end{bmatrix}$$

State:

$$\mathbf{x} = \begin{bmatrix} \ln N_0 & \ln \Lambda & \ln \alpha \end{bmatrix}^T$$

$$N(D) = N_0 \exp(-\Lambda D)$$

$$m(D) = \alpha D^{\beta}$$

Algorithm

$$E[\mathbf{x}|\mathbf{y}] = \int \mathbf{x} \, p(\mathbf{x}|\mathbf{y}) \, \mathrm{d}\mathbf{x} = \frac{1}{p(\mathbf{y})} \int \mathbf{x} \, p(\mathbf{y}|\mathbf{x}) \, p(\mathbf{x}) \, \mathrm{d}\mathbf{x}$$

$$\mathbf{y} = \begin{bmatrix} Z_{\mathrm{dB,Ku}} \\ \mathrm{DWR_{Ka/W}} \\ \mathrm{DWR_{Ku/Ka}} \end{bmatrix} \quad \text{Forward model } + \\ \text{Measurement error}$$

State:

$$\mathbf{x} = \begin{bmatrix} \ln N_0 & \ln \Lambda & \ln \alpha \end{bmatrix}^T$$

$$N(D) = N_0 \exp(-\Lambda D)$$

$$m(D) = \alpha D^{\beta}$$

A priori probability (from field measurements)

OLYMPEX

December 1, 2015

December 1, 2015

December 8, 2015

December 8, 2015

Dec 4, 2015

Comparisons to in-situ data

Ice water content ▶

Error estimates

- Size and number concentration better constrained by multifrequency
- Differences in ice water content and density errors are small

	In N ₀	In ∧	In α	In W _{ice}	In N_T	In <i>D_m</i>	In $ ho_{ m bulk}$
Ku+Ka/W+Ku/Ka	1.17	0.28	0.70	0.78	1.11	0.27	0.90
Ka+Ka/W	1.24	0.41	0.79	0.80	1.12	0.41	1.10
Ku+Ku/Ka	1.75	0.36	0.76	0.92	1.54	0.35	0.96
Ku+Ku/W	1.10	0.31	0.84	0.79	1.11	0.30	1.08
Ku	2.43	0.58	0.81	1.05	1.92	0.58	1.17
Ka	2.34	0.62	0.81	0.95	1.81	0.61	1.19
W	2.13	0.67	0.82	0.79	1.55	0.67	1.22

2.0

0.5

Summary

- Multi-frequency retrieval algorithm for ice and snow microphysics
 - Uses snowflake scattering models of varying densities
 - Can identify processes such as aggregation and riming
 - Tested with OLYMPEX airborne 3-frequency radar data
 - Multi-frequency retrievals improve performance for size and number concentration vs. single frequency

jpl.nasa.gov